
Proactive Drift Detection: Predicting Concept Drifts
in Data Streams using Probabilistic Networks

Kylie Chen
Department of Computer Science

The University of Auckland
Email: kche309@aucklanduni.ac.nz

Yun Sing Koh
Department of Computer Science

The University of Auckland
Email: ykoh@cs.auckland.ac.nz

Patricia Riddle
Department of Computer Science

The University of Auckland
Email: pat@cs.auckland.ac.nz

Abstract—The application of current drift detection methods to
real data streams show trends in the rate of change found by the
detectors. We observe that these patterns of change vary across
different data streams, and we use the term stream volatility
pattern to describe change rates with a distinct mean and
variance. First, we propose a novel drift prediction algorithm to
predict the location of future drift points based on historical drift
trends which we model as transitions between stream volatility
patterns. Our method uses a probabilistic network to learn drift
trends and is independent of the drift detection technique. We
demonstrate that our method is able to learn and predict drift
trends in streams with reoccurring stream volatility patterns. This
allows the anticipation of future changes which enables users and
detection methods to be more proactive. Second, we apply our
drift prediction algorithm by incorporating the drift estimates
into a drift detector, ProSeed, to improve its performance by
decreasing the false positive rate.

I. INTRODUCTION

Much of scientific research involves the generation and
testing of hypotheses that can facilitate the development of ac-
curate models for a system. In machine learning the automated
building of accurate models is desired. However traditional
machine learning often assumes that the underlying models
are static and unchanging over time. In reality there are many
applications where the underlying model or system changes
over time. This may be caused by changes in the conditions
of the system, or a fundamental change in how the system
behaves. For example the development of antibiotic resistance
changes how a pathogen responds to medication. This creates
a need for systems that are able to detect and adapt to changes
in the underlying model.

Many drift detection methods have been developed for the
detection of changes in the streaming environment [1] [2]
[3] [4]. Detectors have been shown to have a high rate of
true positives on synthetic data streams, but most methods do
not consider other information such as historical drift trends
that could allow the anticipation of future change points.
Huang et al. introduced a measure called stream volatility
that represents the rate of change of the stream [5]. In their
paper, they propose a volatility detector to detect changes
in stream volatility and show that there are stream volatility
trends for real data streams [5]. Unfortunately they did not
use the information beyond finding the volatility trend. By
incorporating volatility into traditional drift detectors we can
use the additional information to proactively determine future

changes. This is revolutionary as we are no longer monitoring
historical event but anticipating future changes in the data
stream. If we can map the frequency or interval of changes that
occur to a particular pattern we are able to use this information
to predict a future time range of having high probability of
change occurrence.

We propose a drift predictor for learning stream volatility
trends and a drift detector that can uses drift predictions
to proactively search for drifts. Our drift predictor uses the
output of a drift detector and volatility detector [5] to learn a
probabilistic network. We assume these inputs to be relatively
accurate as shown in Huang et al. [5]. Our drift detector,
ProSeed, then adapts the compression of its data based on
the estimated drift points from the drift predictor.

The main contributions of our work are: (1) a drift predic-
tion algorithm that can accurately learn drift trends of a stream
and (2) a drift detector which incorporates historical drift
rate information that is accurate for streams with reoccurring
volatility trends. We analyze our drift prediction technique by
comparing it to ground truth in synthetic data streams and
show that it can accurately capture trends for streams with re-
occurring volatility patterns. We evaluated the performance of
our drift detector by comparing it against detectors ADWIN2
[3], Seed [5] and DDM [2] on synthetic and real data streams
and show that our technique is able to lower the rate of false
positives for streams with these trends.

Relation to other research: Our research differs from
research in drift detection with reoccurring patterns [6] as their
methods are aimed at detecting models that reoccur whereas
our method aims to learn the characteristics of drift rate trends.
For example, suppose we are trying to learn the concept
of seasons, research in reoccurring patterns focuses on the
order that concepts reoccur such as: spring, summer, autumn,
winter, spring. Our research aims to look at the rate of concept
change, that is the time period between season changes. Unlike
research in temporal forecasting for seasonal patterns, we do
not assume there is any seasonal effect to the changes, and
the trends do not necessarily occur periodically.

The following section describe the background and related
work in the area. Section III discuss the key terminology used
in our research. Section IV discuss the overview in the area.
Sections V and VI discuss the inner workings of our technique.
Section VII shows our experiments. Finally we conclude the

paper and discuss future work in Section VIII.

II. BACKGROUND AND RELATED WORK

Concept drift is the phenomena where there is a change
in the underlying distribution of the data. In the context
of classification, this can be formalized as a change in the
posterior

p(y|X) =
p(y)p(X|y)

p(X)
,

where X are the input features in the feature space RP and
y is the class label. Here p(y) represents the prior probabil-
ities of the classes, p(X|y) represents the class conditional
probabilities for all classes y = 1, 2, . . . , c and p(X) is the
distribution of the input features [7]. Drift detectors often use
numerical measures such as prequential statistics to detect
changes in concepts [7]. The prequential is a binary stream
of classification errors of a classifier, where a zero represents
a correct classification and a one represents an error.

Gama et al.’s survey [7] groups drift detection methods
into four categories: (1) sequential analysis [1], (2) statistical
process control [2], (3) monitoring two distributions [3] [5],
and (4) contextual approaches [8]. Most methods are reactive
in nature and are unable to protectively predict the location of
the next drift point. Huang et al. are the first to use historical
drift points for improving drift detection by introducing a pre-
dictive approach using the mean stream volatility to estimate
the location of the next drift [4]. They use a relative measure
called stream volatility which represents the rate at which
drifts occur [5]. High volatility indicates that concepts in a
stream change frequently, whereas low volatility indicates that
changes are occurring less frequently. Although their method
is predictive, it does not utilize information such as trends of
temporal changes in stream volatility which may provide more
accurate predictions for streams that show reoccurring patterns
of volatility change. Other proactive drift detectors such as [6]
aim to predict concept models for future drifts using historical
trends of concept change. The authors use a Markov Chain to
model the concept history and have shown that this allows the
learner to adjust more quickly to concept change in streams
with reoccurring concepts [6].

Work related to the characterization of changes in data
streams include research on the magnitude of change [9],
research on the rate of change [5] and Webb et al.’s review
which formalizes different aspects of change [10]. A closely
related area is temporal time series forecasting where the goal
is to make predictions on numerical data based on historical
trends and seasonality effects.

III. DEFINITIONS

In this section we define the key terms that are relevant
to the scope of our research. We follow the stream volatility
definition in the previous section and the volatility shift defi-
nition from [5]. We generalize streams with volatility changes
into two categories - streams with abrupt volatility change,
and streams with gradual volatility change, and define two

terms - volatility pattern, and pattern transition to model these
changes.

Volatility shift: A volatility shift is a change in the rate that
drifts occur [5]. Let c1, c2, c3, ..., ct represent the drift points
of a stream, and i1, i2, ...it−1 represent the corresponding drift
intervals between consecutive drifts. A volatility shift occurs
when we can find two volatility windows V1 = (v1, v2, ..., vk)
and V2 = (vk+1, ..., vt−1) with sample variances σ1, σ2 such
that σ1

σ2
≶ 1.0 + β where β is a user defined threshold.

Abrupt volatility change: Streams with abrupt volatility
change represent streams where there are stable periods fol-
lowed by sudden changes in stream volatility, for example a
stream with the drift intervals 100, 100, 100, 300, 300, 300
represents a stream with abrupt volatility change.

Gradual volatility change: Streams with gradual volatility
change are streams with incremental changes in stream volatil-
ity. For example a stream with drift intervals 100, 110, 120,
130, 140, 150 would be classified as a stream with gradual
volatility change.

Volatility pattern: Following the drift point and drift
interval definitions above. We define a volatility pattern as
p = {vm, vm+1, ..., vn} with a mean µp and length lp. The set
of drift intervals {vm, vm+1, ..., vn} is a subset of the intervals
in the volatility windows V1∪V2 and represents a snapshot of
the stream volatility at time t that has a distribution D with
a mean of µ and variance of σ2. The pattern length lp is the
average number of time steps spent in pattern p prior to a
volatility shift at t where t is an approximate location of the
true volatility change point.

For example, given we observe the volatility windows
V1 = (100, 150, 100) and V2 = (100, 150, 500). The pattern
can be estimated to be p1 = {100, 150, 100, 100, 150} and
has a distribution with mean µ{100,150,100,100,150} = 120 and
variance σ2

{100,150,100,100,150} = 750.
Pattern transition: A transition p1 → p2 at time t indicates

that a change in volatility has occurred at time t, where there
is a change in the distribution generating the drift intervals
from distribution D1 corresponding to the volatility pattern p1
to a distribution D2 which corresponds to the volatility pattern
p2 such that the distributions are not equivalent D1 6= D2.

Following from the previous example, suppose we have
two patterns p1 = {100, 150, 100, 100, 150} and p2 =
{1000, 1500, 1000, 1000, 1500}. A transition p1 → p2 at time
step t means that there is a change in volatility at t from
observing a change every 100 time steps to observing a change
every 1000 time steps.

IV. OVERVIEW

In this section we provide a general overview of our drift
predictor that estimates the next drift point based on historical
drift trends and our proposed algorithm, ProSeed , a proactive
drift detector that uses the estimates from the drift predictor
to guide the search for changes.

A. Drift prediction using a probabilistic network
Our drift prediction method has three layers - a drift detector

that provides the drift points and drift intervals, a volatility

detector that is able to locate local volatility change points
using the drift intervals, and a drift prediction algorithm that
uses the location of volatility shifts to estimate the next drift.
We use a pattern reservoir and probabilistic network to learn
the volatility trends of a stream.

A pattern reservoir is a pool of size P that stores volatility
patterns from the stream. Volatility patterns capture a snapshot
of a period where the volatility of the stream is stable. We use
these patterns to build an overall picture of stream volatility
and assume that each pattern has some underlying distribution.
Each pattern has a sample of drift intervals which we use
to approximate the underlying distribution that generates the
intervals, and a pattern length that denotes the number of
time steps the pattern persists before transitioning to another
pattern.

We use a probabilistic network to learn the trends of pattern
changes by using a transition matrix data structure to store the
probability of transitioning to the next pattern given the current
pattern. For example, suppose the error rate of the stream can

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

2
0

9

2
1

7

2
2

5

2
3

3

2
4

1

2
4

9

Er
ro

r
R

at
e

Time

 100 100 100 300 300 300 300 400 400 400

Fig. 1. Error rate of the stream

be represented by the graph above. Let the spikes represent
increases in error rate caused by changes in concepts that
are identified as cut points followed by an adaptation period
where the classifier relearns. Let the time steps 100, 200, 300,
600, 900, 1200, 1600, 2000, 2400, 3000 represent the change
points detected by the drift detector. The corresponding drift
intervals are 100, 100, 100, 300, 300, 300, 300, 400, 400, 400.
The volatility trend representing the rate of change over time
is shown below. Now lets suppose we are able to identify

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

2
0

9

2
1

7

2
2

5

2
3

3

2
4

1

2
4

9

Er
ro

r
R

at
e

Time

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10

D
ri

ft
 In

te
rv

al

Time

 100 100 100 300 300 300 300 400 400 400

Fig. 2. Drift intervals of the stream

the first volatility shift using the volatility detector at time
step 600 after observing the drift interval of 300. When there
is a volatility shift, a pattern will be stored into our pattern
reservoir. This pattern stores a sample of recent data close to
the volatility change which represents a snapshot of the stable
drift intervals preceding the volatility change.

Let the volatility windows be V1 = (100, 100) and V 2 =
(100, 300). We construct a pattern p by removing outliers from
V1∪V2 to get an approximation of the intervals in the stable pe-
riod prior to the change. The first pattern p1 = {100, 100, 100}

is added to the empty pattern reservoir. As this is the first
volatility change we observed, the pattern length of p1 is set
to lp1 = 600 which is the number of time steps between the
volatility change point and the start of the stream.

When the next volatility shift is detected at time step 1600
following the first 400 interval. Assuming the volatility win-
dows are now V1 = (300, 300) and V2 = (300, 400), removing
the outliers the pattern becomes p = {300, 300, 300}. Since
the time between consecutive volatility shifts is 1600−600 =
1000, the pattern length for p is 1000. Then we attempt
to add a new pattern p = {300, 300, 300} into the pattern
reservoir. First we perform pattern matching between the
potential pattern p and the pattern reservoir by testing for
equivalence using the KS test. If an equivalent pattern is
found, we update the data samples in the pattern using the
samples in p. Otherwise we add p as a new pattern p2, and
update the network by adding the transition p1 → p2 to the
probabilistic transition matrix. This transition can be illustrated
by the network below.

p1 p2
1

Fig. 3. Network of pattern transitions

Once we have learned a network, we make predictions by
doing a linear projection of the possible pattern means from
the mean of the latest pattern that we have detected. The details
of this process is given in Section V .

To control the size of our probabilistic network, we merge
similar transitions based on the similarity of the slopes be-
tween consecutive pattern means. For example, assume we
now have three patterns and our network has the transitions
p1 → p2 → p3. Let the vertical axes represent the pattern’s
mean, and the horizontal axes represent time. Let the slope of
µp1 → µp2 be 0.4, and the slope of µp2 → µp3 be 0.45. If the
difference between the slopes are less than a user-defined slope
parameter r, then the transition will be compressed. Suppose
we use r = 0.1, since |s1 − s2| = 0.05 < r, we compress the
transition p1 → p2 → p3 into p1 → p3.

B. ProSeed: Proactive drift detection

Our drift detection method uses a two phase approach: In
the first phase we train our prediction algorithm. In the second
phase we use the predictions to adjust the behaviour of our
drift detector, ProSeed. First we use the drift intervals from
the Seed detector [5] to train our drift prediction algorithm
and learn the network. We use the Seed detector in the first
phase to allow the exploration of the drift trends without any
prior information. Then we use the network generated from
our prediction algorithm to guide ProSeed by controlling the
compression of the data.

ProSeed groups the error rate data into blocks of size b. For
example, suppose the error stream is:

00011000100110110111

Using blocks of size four b = 4, the data becomes:

0001 | 1000 | 1001 | 1011 | 0111
c1 c2 c3 c4

Each vertical bar represents a block boundary and is a potential
drift point c1, c2, c3, c4. We use the drift estimates from the
drift predictor to find time steps where the next drift is likely
to occur. For example, let t1, t2, ..., t20 represent the time
stamps associated with each binary input. If the drift predictor
estimates the next likely drift to be at t6 and t18, the second
and fifth blocks will not be compressed as they contain the
estimated time steps. Blocks between the estimates will be
compressed as drifts are less likely to occur during those
periods. All blocks following the highest estimated drift time
t18 will not be compressed. This would compress the third and
fourth blocks, removing the second potential drift point from
being checked.

0001 | 10001001 | 1011 | 0111
c1 c2 c3

Then the drift detector will search for a drift by testing
for a difference in means at the block boundaries using the
Hoeffding bound detailed in Section VI . The novelty of our
method is that it uses historical drift trends to adjust the
compression of blocks in contrast to Seed which compresses
based on a linear block similarity measure. This could be
advantageous for data streams with reoccurring drift trends.

V. DRIFT PREDICTION USING A PROBABILISTIC NETWORK

In this section we provide the details of our drift prediction
algorithm. We use a drift detector to find points of change
and Huang et al.’s volatility detector [5] to locate the local
peaks and troughs of volatility change. The pseudocode for
our method is shown in Algorithm 1. We will discuss each of
the different components to our technique separately.

A. Pattern construction

When we construct a pattern we store a pool of pattern data
with mean µp to represent the distribution of the drift intervals,
and the average pattern length lp to represent the average time
spent in the pattern before a volatility change was detected.
We use the mean of the pattern µp to decide what the next
drift interval may be, and lp to determine when the change will
occur. The average pattern length lp is updated using the time
between consecutive volatility changes each time we detect
the pattern p.

We populate the pool of a pattern by sampling from a
recent volatility window after a volatility change was de-
tected. Given two volatility windows V1 = (v1, v2, ..., vk)
and V2 = (vk+1, ..., v2k) of size k. Here V2 represents the
buffer that triggered the volatility change. First we compute
the interquartile ranges of V1 ∪ V2 and V2, and choose the
set of intervals that has the smaller interquartile range as the
pool to sample our pattern data from. We assume that there
are trends to the location of the true drifts, and false alarms
are deviations from these trends. To filter out the possible

false alarms and account for the period of volatility change
we remove the outliers from the set of drift intervals. We
assume the outliers contribute to the volatility change, and
follow Tukey’s definition for outliers

Y < (Q1 − 1.5 · IQR) or Y > (Q3 + 1.5 · IQR), (1)

where Y is an outlier, Q1 is the first quartile, Q3 is the third
quartile and IQR is the interquartile range.

B. Pattern matching

When we add a potential pattern p′ to the pattern reservoir
of size P , we first perform pattern matching to ensure that the
pattern is not already present in the pattern reservoir. This is
done by testing for pattern equality using the two sample KS
test. If a matching pattern is found, we update the samples
stored by the pattern by randomly replacing old data points
with the new data samples from p′. This allows patterns to
evolve over time, and can reduce the number of redundant
patterns in the reservoir.

C. Transition compression

We use a transition compression scheme to compress transi-
tions that are similar. An example of this method is presented
in Section IV-A. The aim is to achieve a more compact
representation of the network and also to reduce the number
of pattern transitions to itself which has a dampening effect
on the true transitions in the network.

D. Predicting the next drift

Given that the latest pattern we have seen is pattern px
we can predict the next patterns that are likely to occur
py1, py2, ..., pyk using the network, where k is a parameter
for the number of predictions to use. We recommend setting
this as the size of the pattern reservoir k = P . This will give
us information on what drift interval is likely to change to.
The average length of each predicted pattern ly1, ly2, ..., lyk
will allow us to determine how long we expect the predicted
pattern to persist.

For streams with abrupt volatility change, that have sta-
ble periods punctuated by abrupt changes we use the pat-
tern means µy1, µy2, ..., µyk as the predicted drifts. For
streams with gradual volatility change, that have incremental
changes we calculate the next drift for each predicted pattern
py1 , py2 , ..., pyk by

µyi − µx
lyi

· t, (2)

where µyi is the mean of pattern pyi, µx is the mean of the
latest pattern px, lyi is the average length of pattern pyi and t
is the current time step.

Our current algorithm assumes the nature of the volatility
changes of the stream are known in advance, however in reality
the nature of the stream is often unknown. We outline a method
to address this below.

E. Characterizing volatility change
In real streams the characteristics of the streams are often

unknown. This can lead to significant challenges in modelling
and predicting the behaviour of a stream as well as setting
appropriate parameters. We present a method for addressing
the first issue, that allows us to determine the nature of
volatility changes for streams given only the drift output from
the drift detector.

Given drifts are detected at time steps c1, c2, c3, ..., ct, and
i1, i2, ...it−1 are the corresponding drift intervals between con-
secutive drifts. The drift intervals can be grouped into blocks
B1, B2, B3... of size b ≥ 32. We can compute the difference
in means between consecutive blocks as |µBi − µBi+1|. The
volatility of the stream can be monitored using a histogram
that is updated incrementally. This gives us a view of the
overall volatility of the stream that can allow us to determine
the volatility nature by matching the characteristics of the
histogram with the characteristics of streams with abrupt or
gradual volatility.

Streams with abrupt volatility changes are defined as having
stable periods with abrupt changes in volatility so the distri-
bution of means between consecutive blocks should be more
concentrated at lower values due to the periods of stability,
with a right hand tail that represents the sudden changes.
In contrast streams with gradual volatility changes should
have a relatively even distribution. However the shape of this
distribution also depends on the variance of the drift intervals.

VI. PROSEED: PROACTIVE DRIFT DETECTION

In this section we provide the details of our drift detection
method. ProSeed extends the Seed detector [5] by using drift
trends to proactively search for drifts. Our method differs from
Seed in that we adjust the compression of data stored by the
detector based on drift predictions whereas Seed does not use
historical drift data. The compression of the data affects where
and how often the drift bound is checked.

We use the Hoeffding bound with Bonferroni correction as
a drift bound to determine whether a drift has occurred. Given
a window of data W , we can partition this window into two
subwindows WL and WR. These subwindows are partitioned
according to the block boundaries and represent potential drift
points. The drift bound for our detector is

|µ̂WL
− µ̂WR

| > ε, (3)

ε =

√
2

m
· σ2

W · ln
2

δ′
+

2

3m
ln

2

δ′
, δ′ =

δd
n

(4)

where µ̂WL
and µ̂WR

represent the mean error rate of data in
WL and WR respectively, εd is the Hoeffding bound with Bon-
ferroni correction using a confidence parameter δd ∈ (0, 1), m
is the harmonic mean of the lengths of WL and WR, and n is
the length of W where W = WL +WR. A drift is detected
when the difference between the means surpasses the drift
threshold ε, and data from the left subwindow WL is dropped.
We use this bound as it has been shown to be more sensitive
to small changes and gives strict theoretical guarantees on the
rate of false positives.

Algorithm 1 Drift Prediction Algorithm
Input: Xt ∈ {0, 1} classification result at time t
Output: estimated location of the next concept drift

Initialize driftDetector D
Initialize volatilityDetector V , with buffer B of size b
Initialize driftInterval← 0
Initialize a pattern reservoir P , and network N of size n
Initialize a large buffer L of size 2b

for t > 0 do
estimatedInterval← PredictNextDrift()
pass Xt to D
if D detects a drift then

update L with driftInterval
pass driftInterval to V
if V detects a volatility shift then

AddPattern(L,B from V)
end if
driftInterval← 0

else driftInterval← driftInterval + 1
end if

end for

function ADDPATTERN(Large Buffer L, Buffer B)
data← B
lr ← interquartile range of L
br ← interquartile range of B
if lr ≤ br then data← L
end if
remove outliers in data by Tukey’s method
if PatternFound(data) then

update pattern in P
else

AddToReservoir(data)
end if
update network N

end function

function PATTERNFOUND(data d)
found← false
for each element e in P do

if d equals e by KS-test then found← true
end if

end for
return found

end function

function ADDTORESERVOIR(data d)
if P is not full then add d to P
else replace rarest element in P with d
end if

end function

function PREDICTNEXTDRIFT
E ← list of estimates
F ← list of top k transitions from current pattern px
for pattern f in F do

if state of stream is gradual then
estimate← µf−µpx

lf
· t

else if state of stream is abrupt then
estimate← µf

end if
E ← E ∪ estimate

end for
return E

end function

VII. EXPERIMENTS

We divide our experiments into two phases. In the first phase
we evaluate the accuracy of our drift prediction algorithm. In
the second phase we evaluate our drift detector by comparing
it with Seed [5], ADWIN [3] and DDM [2]. We will briefly
discuss our synthetic data generation process below.

Synthetic data streams: We generate streams with two
types of volatility changes - streams with abrupt volatility
change, and streams with gradual volatility change as de-
scribed in Section III. We generate data with volatility trends
by defining volatility patterns and a transition network for
these patterns. We generate patterns with distinct means µH =
{100, 200, 300, ...} each with variance σ2

H = 100 representing
streams with high volatility, and µL = {1000, 2000, 3000, ...},
σ2
L = 1000 for streams with low volatility. Based on these

patterns we generate networks with cyclic trends. Consider
the simple example with three patterns a, b, c, and the cyclic
network a→ b→ c→ a. Transition probabilities are labelled
as p and q. Here p ∈ {0.9, 0.75, 0.5} is a transition probability,

a

b c

q
p

q
p

p

q

Fig. 4. Cyclic network with three patterns

and q = 1− p.
First we generate drift intervals by using a cyclic network

to determine the location of change points, then we simulating
drifts at after each drift interval by changing the error rate or
concept function for the stream based on the drift intervals
from our network. We use two types of synthetic streams: (1)
Bernoulli streams which simulates the error rate of a learner,
and (2) SEA streams that has concepts which can be learned
by a tree learner. We generate drifts in Bernoulli streams by
alternating the mean error rate µ between values of 0.2 and 0.8
at each change point. We generate SEA streams by changing
the threshold for the concept function, we choose the threshold
values to be 7 and 9.5 to simulate a more subtle change.

Parameter selection: For the volatility detector we use b =
32, c = 0.5 for abrupt volatility streams, and b = 32, c =
0.2 for gradual volatility streams. We set this generously so
that it can more accurately capture changes in the drifts. For
ADWIN2, and Seed we use the recommended settings of δ =
0.05 and Seed best from [5]. For ProSeed we use the same
parameters as Seed, and α = 3, β = 2 for DDM.

A. Drift Prediction

We evaluate our drift prediction algorithm by generating
synthetic streams with cyclic volatility trends and compare the
patterns and network produced by our predictor to the ground
truth values for the streams.

Evaluation metrics: We use two metrics for measuring
network similarity: The number of true transitions (TT) which
shows how many transitions from the stream is captured by the
drift predictor’s network, and the number of additional tran-
sitions (AT) which measures how many additional transitions
are present in the drift predictor’s network that are not in the
stream’s network. For comparing different sized networks, we
compress the larger network from the drift predictor so that
it is the same size as the network from the stream. Network
compression is performed by merging the most similar patterns
according to the lowest D statistic value from the KS test until
both networks have the same size. We present the average and
standard deviation values over 100 runs.

In these experiments we present the results on streams
with abrupt volatility change. For the experiments presented
in Tables I, III, IV we generate synthetic streams with 500
transitions between patterns with high volatility µH and a
volatility interval of 100. The volatility interval is the number
of drift points between volatility changes, a higher value
represents a more stable stream.

In Table I we show the effect of the drift predictor’s pattern
reservoir size on networks of various sizes. Here P is the
pattern reservoir size, and N is the size of the synthetic
network. As the number of true transitions is close to 500 for
networks of size 3 and 5 this indicates that the predictor has
been able to capture these transitions accurately. For networks
of size 10, we observe a significant decrease in the number
of true transitions when P = 10 because the total number of
patterns detected is around 30, so setting the pattern reservoir
size at 10 restricts the number of transitions the network can
capture. A larger network can give a finer granularity of the
trends whereas a smaller network may be better at capturing
frequent patterns of the stream. We note that the high number
of additional transitions is a result of false positives from the
input of the volatility detector. This has a dampening effect
on the probability of the transitions, however as we base the
predictions on the top k transitions the effect is less prominent.

For the later experiments Tables II, III, IV we keep the
stream’s network size fixed at N = 3, and vary other
parameters of the stream. In Table II we examine the effect of
the stability of the drift rate on the accuracy of our computed
network. Here V denotes the volatility interval which is the
number of cut points between changes in the drift rate. The
number of true transitions captured is relatively robust to the
stability of the trends, but the number of additional transitions
detected increases with respect to the size of the volatility
interval.

In Table III we show the effect of adding Gaussian noise
with a standard deviation of σ to the patterns. This increases
the amount of overlap between between patterns. For example
if 95% of pattern a falls within the bounds (80, 120) and
95% of pattern b falls between (180, 220). Adding noise to
a and b increases the range of the patterns, so the patterns
could become a = (40, 180), b = (140, 260). The accuracy
of the network degrades as the percentage of overlap between
the patterns increases. Table IV compares the accuracy of the

TABLE I
NETWORK COMPARISON: ABRUPT BERNOULLI STREAMS WITH DIFFERENT NETWORK SIZES

Metric N / P 10 30 100
3 497.99 ± (0.90) 498.26 ± (0.66) 498.26 ± (0.66)

TT 5 496.94 ± (2.33) 498.29 ± (0.68) 498.29 ± (0.68)
10 267.04 ± (61.59) 481.88 ± (20.83) 481.88 ± (20.83)
3 603.59 ± (9.92) 603.89 ± (9.92) 603.89 ± (9.92)

AT 5 601.06 ± (10.37) 601.99 ± (10.32) 601.99 ± (10.32)
10 482.50 ± (36.38) 624.43 ± (20.50) 624.43 ± (20.50)
3 10498.80 ± (950.36) 17610.24 ± (1262.56) 92090.24 ± (1262.56)

Memory 5 10832.88 ± (630.05) 18493.68 ± (1420.28) 92973.68 ± (1420.28)
10 11016.40 ± (78.48) 29319.20 ± (1777.46) 103799.20 ± (1777.46)

TABLE II
NETWORK COMPARISON: ABRUPT BERNOULLI STREAMS WITH

DIFFERENT VOLATILITY LEVELS

V TT (SD) AT (SD) Time (SD)
100 498.26 ± (0.66) 603.89 ± (9.92) 991.54 ± (50.64)
200 498.63 ± (0.49) 899.34 ± (20.13) 1345.64 ± (87.02)
500 498.91 ± (0.29) 1747.37 ± (44.31) 2368.44 ± (150.66)

TABLE III
NETWORK COMPARISON: ABRUPT BERNOULLI STREAMS WITH

GAUSSIAN PATTERN NOISE

Pattern Noise (σ) TT (SD) AT (SD)
0 498.26 ± (0.66) 603.89 ± (9.92)
25 457.89 ± (51.06) 507.32 ± (52.77)
50 230.70 ± (57.88) 210.88 ± (58.71)

patterns detected. µp is the mean of the true pattern and σ2
p is

the variance of the true pattern. In the best case, the computed
means and variances are very accurate but the variance can
be significantly higher in the worst case. This occurs when
the drift prediction algorithm is unable to correctly separate
patterns at a change point. The median value of the computed
variances which we have not presented here is close to the
theoretical values.

B. Drift detection

Tables V and VII show drift detectors evaluated on streams
with abrupt volatility changes. Tables VI and VIII show results
from evaluation on streams with gradual volatility change.

In the following experiments we use patterns with low
volatility µL, and generate 10000 drift points in each stream.

TABLE IV
PATTERN COMPARISON: ABRUPT BERNOULLI STREAMS WITH PATTERN

NOISE

Pattern Noise (σ) µp σ2
p µBest σ2

Best µWorst σ2
Worst

0 100 100 99.84 105.40 120.96 3383.96
0 200 100 200.00 99.71 219.84 2448.81
0 300 100 299.20 108.71 263.36 5437.65

25 100 100 99.84 90.51 145.60 6699.54
25 200 100 200.00 464.52 254.72 5239.05
25 300 100 299.20 649.05 250.88 6915.21
50 100 100 100.16 530.96 176.64 8532.92
50 200 100 200.32 546.40 128.00 10382.64
50 300 100 299.84 309.79 217.6 8578.74

For the SEA streams, we first pass the data through a Hoeffd-
ing Tree to generate the error rate input to the detectors.

In Tables V, VI, VII and VIII, we observe that Seed and
ADWIN are comparable in terms of the number of true drifts
found. However ADWIN is more sensitive to false positives.
This may be due to the way the data is stored which facilitates
the detection of small changes. We show that ProSeed is able
to accurately detect many true drifts, and is comparable to
Seed and ADWIN in terms of true positives for the Bernoulli
streams. Although ProSeed has a small reduction in true
positive, it is able to effectively lowest the number of false
positives detected. This gives promise to the use of drift trends
for achieving a more accurate drift detector.

We also evaluated our drift detector on real data streams:
Sensor stream, and Forest Covertype. As we do not know the
location of true drifts for real streams we can not assess the
true positive and false positive rates. We show the number of
drifts detected by ProSeed is lower than the number of drifts
detected by Seed. This suggests that it may have also reduced
the number of false positives.

VIII. CONCLUSIONS

We proposed a drift prediction algorithm that can accurately
learn drift trends of a stream using a probabilistic network.
We then proposed a new drift detector which incorporates
historical drift rate information that is accurate for streams
with reoccurring volatility trends. The highlight of our new
technique is that it allows us to proactively determine when
we would see future drift point. This in itself changes the
landscape of how drift detectors are currently developed and
used. To show the accuracy and feasibility of our technique,
we analyze our drift prediction technique by comparing it to
ground truth in synthetic data streams and show that it can ac-
curately capture trends for streams with reoccurring volatility
patterns. In our experiments we compared the performance of
our drift detector against other benchmark detectors such as
ADWIN2 [3], Seed [5] and DDM [2] on synthetic and real
data streams and show that our technique is able to lower the
rate of false positives for streams with these trends.

One current limitation of our technique is that it is currently
chose to predict the network patterns using the by matching
the patterns using the information from the drift interval. In the
future we can map both concept models and network patterns
together. This would provide us with more knowledge about

TABLE V
DRIFT DETECTION ON ABRUPT BERNOULLI STREAMS

Detector TP (SD) FP (SD) Delay (SD) Memory (SD) Time (SD)
ProSeed 9998.89 ± 0.31 33.10 ± 5.93 34.64 ± 10.09 683.84 ± 157.90 598.78 ± 14.57

Seed 9999.00 ± 0.00 213.34 ± 16.90 34.51 ± 10.15 2207.04 ± 974.11 1539.03 ± 41.15
ADWIN2 9999.00 ± 0.00 12689.68 ± 78.04 34.01 ± 10.14 1747.36 ± 137.13 5262.68 ± 108.51

DDM 5000.01 ± 0.22 97.41 ± 10.25 201.51 ± 52.57 128.00 ± 0.00 322.62 ± 15.52

TABLE VI
DRIFT DETECTION ON GRADUAL BERNOULLI STREAMS

Detector TP (SD) FP (SD) Delay (SD) Memory (SD) Time (SD)
ProSeed 9998.92 ± 0.27 44.32 ± 6.43 34.53 ± 10.10 852.56 ± 349.62 558.01 ± 20.51

Seed 9998.99 ± 0.10 210.50 ± 15.21 34.46 ± 10.14 1968.48 ± 871.98 1479.92 ± 45.38
ADWIN2 9999.00 ± 0.00 12698.08 ± 68.53 33.98 ± 10.13 1740.64 ± 132.91 5254.83 ± 116.28

DDM 5000.04 ± 0.20 100.98 ± 10.03 203.29 ± 38.28 128.00 ± 0.00 299.54 ± 15.22

TABLE VII
DRIFT DETECTION ON ABRUPT SEA STREAMS

Detector TP (SD) FP (SD) Delay (SD) Memory (SD) Time (SD)
ProSeed 9895.42 ± 47.34 37.02 ± 11.47 135.59 ± 92.23 641.60 ± 138.40 624.50 ± 16.47

Seed 9997.14 ± 1.83 165.69 ± 11.45 117.15 ± 65.97 1845.12 ± 818.37 1578.80 ± 38.42
ADWIN2 9997.00 ± 1.98 24920.11 ± 173.14 127.01 ± 74.95 1750.72 ± 139.07 8576.84 ± 171.26

DDM 2453.68 ± 2507.21 945.90 ± 966.72 436.25 ± 231.54 128.00 ± 0.00 357.25 ± 47.99

TABLE VIII
DRIFT DETECTION ON GRADUAL SEA STREAMS

Detector TP (SD) FP (SD) Delay (SD) Memory (SD) Time (SD)
ProSeed 9820.32 ± 22.33 12.70 ± 3.63 217.24 ± 246.87 874.16 ± 315.96 599.08 ± 19.62

Seed 9997.18 ± 1.94 169.41 ± 12.37 116.85 ± 65.93 1876.32 ± 946.58 1536.42 ± 46.24
ADWIN2 9996.92 ± 2.04 25391.84 ± 183.48 126.12 ± 76.20 1740.64 ± 132.91 8547.74 ± 192.83

DDM 2301.24 ± 2501.38 906.03 ± 985.18 440.90 ± 221.87 128.00 ± 0.00 342.29 ± 42.40

TABLE IX
DRIFT DETECTION ON SENSOR STREAM

Detector Drifts Detected Memory Time
ProSeed 952.00 440.00 313.73

Seed 1152.00 456.00 266.60
ADWIN2 3348.00 1240.00 1107.10

DDM 197.00 128.00 60.95

TABLE X
DRIFT DETECTION ON FOREST COVERTYPE STREAM

Detector Drifts Detected Memory Time
ProSeed 2309.00 1520.00 45.02

Seed 2562.00 1512.00 43.66
ADWIN2 3218.00 1576.00 268.70

DDM 1374.00 128.00 22.81

predictions and enhance the drift detector capability of only
detecting true changes and reduces the false positives further.

REFERENCES

[1] E. Page, “Continuous inspection schemes,” Biometrika, pp. 100–115,
1954.

[2] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with
drift detection,” in Advances in Artificial Intelligence - SBIA 2004, ser.
Lecture Notes in Computer Science, A. Bazzan and S. Labidi, Eds.
Springer Berlin Heidelberg, 2004, vol. 3171, pp. 286–295. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-28645-5 29

[3] A. Bifet and R. Gavaldà, “Learning from time-changing data
with adaptive windowing,” in Proceedings of the Seventh SIAM
International Conference on Data Mining, April 26-28, 2007,
Minneapolis, Minnesota, USA, 2007, pp. 443–448. [Online]. Available:
http://dx.doi.org/10.1137/1.9781611972771.42

[4] D. T. J. Huang, Y. S. Koh, G. Dobbie, and A. Bifet, “Drift detection
using stream volatility,” in Machine Learning and Knowledge Discovery
in Databases, ser. Lecture Notes in Computer Science, A. Appice,
P. P. Rodrigues, V. Santos Costa, C. Soares, J. Gama, and A. Jorge,
Eds. Springer International Publishing, 2015, vol. 9284, pp. 417–432.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-23528-8 26

[5] D. T. J. Huang, Y. S. Koh, G. Dobbie, and R. Pears, “Detecting volatility
shift in data streams,” in 2014 IEEE International Conference on Data
Mining, ICDM 2014, Shenzhen, China, December 14-17, 2014, 2014, pp.
863–868. [Online]. Available: http://dx.doi.org/10.1109/ICDM.2014.50

[6] Y. Yang, X. Wu, and X. Zhu, “Mining in anticipation for concept
change: Proactive-reactive prediction in data streams,” Data mining and
knowledge discovery, vol. 13, no. 3, pp. 261–289, 2006.

[7] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia,
“A survey on concept drift adaptation,” ACM Comput. Surv.,
vol. 46, no. 4, pp. 44:1–44:37, Mar. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2523813

[8] R. Klinkenberg, “Learning drifting concepts: Example selection vs.
example weighting,” Intell. Data Anal., vol. 8, no. 3, pp. 281–300, Aug.
2004. [Online]. Available: http://dl.acm.org/citation.cfm?id=1293831.
1293836

[9] P. Kosina, J. Gama, and R. Sebastião, “Drift severity metric,” in ECAI
2010 - 19th European Conference on Artificial Intelligence, Lisbon,
Portugal, August 16-20, 2010, Proceedings, 2010, pp. 1119–1120.
[Online]. Available: http://dx.doi.org/10.3233/978-1-60750-606-5-1119

[10] G. Webb, R. Hyde, H. Cao, H. Nguyen, and F. Petitjean, “Characterizing
concept drift,” Data Mining and Knowledge Discovery, 2016. [Online].
Available: http://arxiv.org/abs/1511.03816

http://dx.doi.org/10.1007/978-3-540-28645-5_29
http://dx.doi.org/10.1137/1.9781611972771.42
http://dx.doi.org/10.1007/978-3-319-23528-8_26
http://dx.doi.org/10.1109/ICDM.2014.50
http://doi.acm.org/10.1145/2523813
http://dl.acm.org/citation.cfm?id=1293831.1293836
http://dl.acm.org/citation.cfm?id=1293831.1293836
http://dx.doi.org/10.3233/978-1-60750-606-5-1119
http://arxiv.org/abs/1511.03816

	Introduction
	Background and Related Work
	Definitions
	Overview
	Drift prediction using a probabilistic network
	ProSeed: Proactive drift detection

	Drift prediction using a probabilistic network
	Pattern construction
	Pattern matching
	Transition compression
	Predicting the next drift
	Characterizing volatility change

	ProSeed: Proactive drift detection
	Experiments
	Drift Prediction
	Drift detection

	Conclusions
	References

